MAF testing using fuel trim

Albin Diagnostician Leavenworth, Washington Posted   Latest   Edited  
Case Study
Driveability
1999 Oldsmobile Bravada 4.3L (W) 4-spd (4L60-E)
P0171 - System Too Lean Bank 1
Low Power

1999 Olds Bravada poor power. Power = 4.3 V6, Automatic transmission & AWD transfer case. The complaint is: “the vehicle has low power when accelerating or when climbing hills”. First test was with a scan tool, fuel trim long term and short term on both banks. The two front oxygen sensor voltages, engine load, throttle position and engine RPM were also gathered. The engine has a very hard time making it to 60 MPH, but once there, it will cruise fine, unless you need to climb a hill. Seat of the pants says it’s a fuel supply issue, let’s take a look at the scan tool and let it tell us where the problem is.

process​.​filestackapi​.​com/resize=h:1000…

The first capture is a parade of the total test drive, which is one mile out and one mile back. The operating conditions started at idle, short drive, then WOT up through two shift points. Some things I noticed are; max engine load = 67%, Long term trim bounced between -3 to +18%, short term trim bounced between -10 to +50 and the front o2 sensor voltage went to 0 at wide open throttle.

process​.​filestackapi​.​com/resize=h:1000…

The second capture is a zoom to the WOT data. Here the calculated engine low is low at 67% max, the long term trim are locked at 9%, which is normal for this platform & year, but the oxygen sensor voltage is laying on the floor. Is this low o2 sensor voltage caused by a lack of fuel supply, or the MAF sensor not reporting enough air being inhaled by the engine? I did test the fuel pressure, and I didn’t see any problems there. The MAF only reported 107 G/S of air; this seems low, although if there were an exhaust restriction, the MAF reading would be low. Don’t jump to conclusions; let the scan tool tell us where the problem is.

process​.​filestackapi​.​com/resize=h:1000…

The next capture is of the vehicle at cruise. Notice the oxygen sensor is back switching normal, but pay close attention to the fuel trim numbers and how they are trending. How the trims trend are as important as what the numbers are. The short term trend from a -30 to a +35 or so, with throttle movement; the long term trend from a -3 to a +10, then after the WOT throttle, they move on up to 16% or so. This is not normal operation of the fuel control of this engine. Examining the captured data, I can see the MAF is reporting ok at idle, but as the demand for power increases, the trims start climbing, which is giving a clue of the MAF under reporting the air flow to the engine. When it comes to the WOT porting on the test drive, the system goes to open loop and fuel enrichment, as seen in the long term trims, although, the oxygen sensors are waving a red flag of insufficient fuel supply. By using all the data, the problem is pointing to an under-reporting MAF sensor, which is causing all the problems found. I have taken the captured data and plugged it into a VE calculator. The calculation was 53% VE, which is way low for this engine.

process​.​filestackapi​.​com/resize=h:1000…

If perchance the low MAF reading was caused by an intake or exhaust flow problem, the engine load would be low, the MAF reading would be low, but the fuel trim numbers and trends would be normal. Since the fuel injection pulse width is largely determined by the input from the MAF sensor, a restricted airflow would not cause any trim shift, only a low engine load pid value.

process​.​filestackapi​.​com/resize=h:1000…

With a new MAF installed, the data looks way different. The first thing that catches my eye is the load PID value of 95%. That is normal for this engine family & year. Notice how the fuel trim pids trend. This is way different than on the first captures.

process​.​filestackapi​.​com/resize=h:1000…

The WOT/VE portion of the test drive looks a lot different too. The zoomed data is a little easier to understand and notice again how the trim data is trending smoothly. You don’t see the huge mood swings as were seen in the first data capture. The long term trims are fixed at 9%, which is normal for fuel enrichment for this engine platform. Take a close look at the oxygen sensor voltage at WOT. The voltage comes up above .9V, but as the throttle is held open and the engine is eating up the fuel, the oxygen sensor voltage starts to drop a little. This is the electronic fuel pressure gauge built into the scan tool. The oxygen sensor voltage is showing a weak fuel pump, which is on the ragged edge of failing. This also could be caused by a restricted fuel filter that is not allowing the needed fuel volume for the engine.

process​.​filestackapi​.​com/resize=h:1000…

As the throttle is backed off to cruise, the engine goes back into closed loop and the o2 voltage and trims return to normal operation.

process​.​filestackapi​.​com/resize=h:1000…

The final VE test was done from the captured data and it shows a VE of 77%. Can I use the VE calculator to condemn a MAF sensor all by its self? I don’t trust it enough to hang my hat on the data, but it sure helps out along with the fuel trim data.

+10
Avery Technician
Kansas City, Missouri
Avery
 

Would you happen to have a copy of that excel worksheet? If so attach it to this post. Thank you!

0 Ð Bounty Awarded
Albin Diagnostician
Leavenworth, Washington
Albin
 

I tried uploading the excel file, but I get a message the file type is not supported.

0 Ð Bounty Awarded
Scott Manager
Claremont, California
Scott
 

Hi Albin, Soon we’ll have support for other file types. If you have the sheet shared via Google Drive or One Drive, you can post the link here. If that won’t work for you, email me the file and I’ll set it up for you. …

0 Ð Bounty Awarded
Hans Educator
Nieuwegein, Netherlands
Hans
 

Hi Albin, In de google play store you can download VE-calculators for youre labtop or handy.

0 Ð Bounty Awarded
Danny Technician
Cleveland, Tennessee
Danny
 

Thanks Albin i always get something out of your post keep up the good work.

0 Ð Bounty Awarded
Michael Diagnostician
Holt, Michigan
Michael
 

Great writeup and very informative. The scan tool is very powerful tool way above just reading codes. I hope that others will take a piece of this and put it into their routine on their test drives. It can tell you a lot with very little effort besides driving the vehicle in several states like cruise and full throttle acceleration. Thank you so much for taking the time to share all this

0 Ð Bounty Awarded
Bill Technician
Rosetown, Saskatchewan
Bill
 

Nice Albin. I agree scan data is great way to reason metered MAF error through interpretation. Known good MAF/VE's #'s are nice to have, but can be variable. There are also physical airflow issues like you stated making interpretation necessary. I also would not hang my hat on a generic VE calculation. I would like to add that while I agree that a trending downwards H02S under maximum flow

0 Ð Bounty Awarded
Albin Diagnostician
Leavenworth, Washington
Albin
 

This might help a little with your questions. This compares the data from the old and new sensors. process​.​filestackapi​.​com/resize=h:1000… Not all MAF sensors fail the same way. The short term swings you see are caused by the reported air flow not keeping up with the actual air flow. The PCM is going to inject the fuel in accordance with the amount of air that is

0 Ð Bounty Awarded
Bill Technician
Rosetown, Saskatchewan
Bill
 

Hello Albin. I wonder if the short term swings are due to table transitions within the software? When cruising and under changing airflow transitions the program will transition between authority of the speed density table and transition into MAF authority. The program would command (+)short term fuel trims because of the unmetered air entering the engine from the under reporting MAF sensor and

0 Ð Bounty Awarded
Scott Manager
Claremont, California
Scott
 

Hi Albin, Can you share the before and after data at 3,600 RPM? This is where peak toque (and peak VE) should occur, right?

0 Ð Bounty Awarded
Albin Diagnostician
Leavenworth, Washington
Albin
   

Here is the pics of the scan data, both old and new MAF, & the VE calculations at the same speed. Bad MAF @ 3500 RPM VE Bad MAF @ 3500 RPM New MAF @ 3500 RPM VE @ 3500 RPM There is one more piece of data I would like to post up about this problem. I have taken the data at idle, 1500 RPM, WOT & 2500 RPM at cruise to compare the old MAF & the new MAF. this gives a good picture of

0 Ð Bounty Awarded
Scott Manager
Claremont, California
Scott
 

Thanks Albin, The Cyl/Air before and after are as follows: - New MAF: 3594 RPM 121.85 g/s = 0.68 Grams/Cyl (80.5%) - Old MAF: 3527 RPM 82.27 g/s = 0.47 Grams/Cyl (55.6%) 100% Cyl fill = 0.844 grams. I like to do the quick math on Cylinder Air to see if I’m in the ballpark and move on. Besides, this is what the ECM is using to calculate fuel. The VE Calculator has its place but this method

0 Ð Bounty Awarded